The electrical properties of auditory hair cells in the frog amphibian papilla.

نویسندگان

  • M S Smotherman
  • P M Narins
چکیده

The amphibian papilla (AP) is the principal auditory organ of the frog. Anatomical and neurophysiological evidence suggests that this hearing organ utilizes both mechanical and electrical (hair cell-based) frequency tuning mechanisms, yet relatively little is known about the electrophysiology of AP hair cells. Using the whole-cell patch-clamp technique, we have investigated the electrical properties and ionic currents of isolated hair cells along the rostrocaudal axis of the AP. Electrical resonances were observed in the voltage response of hair cells harvested from the rostral and medial, but not caudal, regions of the AP. Two ionic currents, ICa and IK(Ca), were observed in every hair cell; however, their amplitudes varied substantially along the epithelium. Only rostral hair cells exhibited an inactivating potassium current (IA), whereas an inwardly rectifying potassium current (IK1) was identified only in caudal AP hair cells. Electrically tuned hair cells exhibited resonant frequencies from 50 to 375 Hz, which correlated well with hair cell position and the tonotopic organization of the papilla. Variations in the kinetics of the outward current contribute substantially to the determination of resonant frequency. ICa and IK(Ca) amplitudes increased with resonant frequency, reducing the membrane time constant with increasing resonant frequency. We conclude that a tonotopically organized hair cell substrate exists to support electrical tuning in the rostromedial region of the frog amphibian papilla and that the cellular mechanisms for frequency determination are very similar to those reported for another electrically tuned auditory organ, the turtle basilar papilla.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for water-permeable channels in auditory hair cells in the leopard frog.

Auditory hair cells in the amphibian papilla (APHCs) of the leopard frog, Rana pipiens pipiens, have a significantly higher permeability to water than that observed in mammalian hair cells. The insensitivity of water permeability in frog hair cells to extracellular mercury suggests that an amphibian homologue of the water channel aquaporin-4 (AQP4) may mediate water transport in these cells. Us...

متن کامل

Brief Communications Frequency-Selective Exocytosis by Ribbon Synapses of Hair Cells in the Bullfrog’s Amphibian Papilla

The activity of auditory afferent fibers depends strongly on the frequency of stimulation. Although the bullfrog’s amphibian papilla lacks the flexible basilar membrane that effects tuning in mammals, its afferents display comparable frequency selectivity. Seeking additional mechanisms of tuning in this organ, we monitored the synaptic output of hair cells by measuring changes in their membrane...

متن کامل

Mechanics of the frog ear.

The frog inner ear contains three regions that are sensitive to airborne sound and which are functionally distinct. (1) The responses of nerve fibres innervating the low-frequency, rostral part of the amphibian papilla (AP) are complex. Electrical tuning of hair cells presumably contributes to the frequency selectivity of these responses. (2) The caudal part of the AP covers the mid-frequency p...

متن کامل

Frequency-selective exocytosis by ribbon synapses of hair cells in the bullfrog's amphibian papilla.

The activity of auditory afferent fibers depends strongly on the frequency of stimulation. Although the bullfrog's amphibian papilla lacks the flexible basilar membrane that effects tuning in mammals, its afferents display comparable frequency selectivity. Seeking additional mechanisms of tuning in this organ, we monitored the synaptic output of hair cells by measuring changes in their membrane...

متن کامل

Slow motility in hair cells of the frog amphibian papilla: myosin light chain-mediated shape change.

Using video, fluorescence and confocal microscopy, quantitative analysis and modeling, we investigated intracellular processes mediating the calcium/calmodulin (Ca(2+)/CaM)-dependent slow motility in hair cells dissociated from the rostral region of amphibian papilla, one of the two auditory organs in frogs. The time course of shape changes in these hair cells during the period of pretreatment ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 13  شماره 

صفحات  -

تاریخ انتشار 1999